结合电力电子技术的发展趋势,基于现代电力电子器件的电能变换与控制实验平台一方面与现有电力电子技术及电机实验装置进行对接,实现对现有实验装置的升级和改进,挖掘现有实验平台的资源潜力;另一方面作为独立的电能变换与控制系统,将现代电力电子器件应用于电力电子新技术中,从广度和深度两方面扩充实验内容,比如从全控型器件的应用扩展到复合型器件、智能型器件的应用,从器件特性和工作原理的验证性实验扩展到电动机驱动、电阻网络控制以及电能回馈设计等探究性实验。基于现代电力电子器件的电能变换与控制实验平台的设计如图1所示。其设计思想遵循三个方面的原则:一是综合性,可以融合自动控制原理、可编程以及电机学等课程教学资源。在实验平台中不仅要体现单一学科的实践和应用,而是要树立学生系统的观念,将多门学科的专业知识综合应用;二是开放式,留有兼容与升级的接口。如其中的实验平台中电能变换模块的单元,在设计时考虑平台的扩容与升级,为今后功能扩展以及更换预留接口;三是模块化,分级模块化,不仅能够在器件的驱动使用上更加方便,而且有利于维修。
项目采用模块化设计方法,选用多种现代电力电子器件开发一种电能变换与控制实验平台。该实验平台由电力电子器件、驱动模块、保护模块、脉冲宽度调制模块以及电能输入和输出接口模块等组成,通过对输出电能参数的控制,可以改变电动机等运动负荷或电阻网络等静止负荷的工作特性,如图1所示。电能变换与控制平台在电力电子应用系统(如图1)中,起着衔接原始的供电电源与最终负载之间的桥梁作用,把电源提供的粗电(coarsepower)转换成符合负载要求的精电(refinedpower)。其中,精电的电能质量指标主要取决于电能变换与控制平台的特性。研究成果的具体指标为:选用现代电力电子器件的覆盖范围,包括全控型、复合型与智能型电力电子器件的典型代表,如MOSFET、IGBT、MCT、IGCT和IEGT等。电力电子器件的驱动电路和保护电路的功能。由于电力电子器件是以弱电信号控制强电能量的形式,驱动电路和保护电路是不可或缺的组成部分。实验平台需对每一电力电子器件设计驱动电路和保护电路。能够实现电能的变换与控制。本实验平台的重要应用领域是对电能进行变换和控制。作为基本功能实现与否的评价标准,是检测该实验平台可否实现电能的变换与控制。电力电子器件的控制方法是通过PWM脉冲序列控制。作为普遍适用的一种重要控制方法,PWM脉冲序列发生电路为各器件提供控制信号。与现有实验平台的兼容性。拟开发的实验平台具备与有源负荷及无源负荷的接口,能够驱动无源负荷及有源负荷,体现出在负荷匹配方面的灵活性与开放性。
实验平台采用模块化的设计,不仅可以适应现有的实验装置,实现对现有实验装置的升级改进,而且有利于在今后的进一步技术升级。主要研究内容包括:针对所选用的多种现代电力电子器件,包括电力MOSFET、IGBT、MCT、IGCT和IEGT等,分别设计每种器件相应的驱动电路和保护电路。由脉冲宽度调制(PulseWidthModulation,PWM)控制芯片SG3525为核心设计PWM波形发生单元,为各驱动电路提供驱动波形。设计电能的输入、测试与输出接口电路。不仅实现与外部电源和负载接口的匹配,而且可以对变换及控制过程中电能的形式进行检测。电能输出接口的兼容性设计。经过变换与控制的电能,所连接负荷包括有源负载,如电网,及无源负载,如电动机等电动设备或阻抗元件等。实验平台的电磁兼容设计和安全保护设计。一方面满足实验室环境下电磁兼容的需要,另一方面保证在操作过程中的人身、设备安全保护。
以现代电力电子器件的电能变换与控制实验平台为基础所进行的实验教学体系改革主要从教学内容、教学方法和考核方法等三个方面进行。目前,国内普遍采用的商业开发实验教学平台可实现的教学内容包括单结晶体管触发电路及单相半波可控整流电路实验、锯齿波同步移相触发电路及单相桥式全控整流及有源逆变电路实验、三相桥式全控整流及有源逆变电路实验、三相交流调压电路实验、直流斩波电路原理实验、GTO和GTR驱动与保护电路实验等,这些实验内容多属验证性实验。而现代电力电子器件的电能变换与控制实验平台不仅能够对电力电子技术课程的现代电力电子器件特性、主要电路拓扑结构的工作过程以及新型控制技术的原理性验证,还能够实现从器件、到结构直至整个系统的整合,给学生提供一个从下到上,包含各个层次的电力电子系统。此外,该实验平台还可以综合自动控制原理、计算机网络和可编程等课程内容,实现以电力电子技术为主的综合性探究实验,体现学科交叉及课程体系间的联系。
在传统的电力电子技术实验教学过程中是以教师讲授为中心,力图对实验平台上的每一个元件或者按钮都讲得很细,力求在实验课上的有限时间内解决所有问题,实际上学生总是处于被动接受的地位,极大地妨碍了其主动性和积极性的发挥,不利于学生素质和能力的培养。与此同时,实验课时压缩客观上迫使实验教学方法进行必要改革。因此,在教学中教师应当在保持实验教学内容的系统性和完整性的同时,力求突出实验内容的重点和难点;革新实验室管理方法,保持实验平台的开放与正常运行,使得学生可以在更大的时间范围内自由选择进行实验操作的可能性。此外,大胆引入学生自学方法,即精心选择一部分内容让学生课外去自学。例如,在讲解电能质量控制装置时,课堂上可以重点介绍并联型电力有源滤波器这一典型装置的工作原理、控制方法和应用设计,而将其他类型的有源滤波器(包括串联型和混合型)等装置技术留给学生去自学[5]。为了督促学生重视实验,除了在实验时教师严格管理、多方教育外,我们在期末考试的试题中引入与实验相关的内容,平时对每位学生的每个实验进行评分,并将实验成绩按一定比例记入课程总成绩。电子实习和课程设计均为独立考核、计算学分,并计入总学分。为使成绩评定公平合理,把学生实习和设计时的表现、成果、测试按照一定比例算得成绩。经实践证明,这些手段和方法确实对教学起到了积极的促进作用。
#p#分页标题#e# 把握电力电子器件发展的方向,并适时将电力电子器件及其相应的应用技术引入实践教学环节,一方面能够培养学生始终站在科学发展前沿的自觉精神,有利于提高学生在专业成长历程中的适应能力;另一方面可以更新教师的知识结构,强化教师在知识吸纳与传授过程中的前瞻意识,提高实践教学环节的教学质量。现代电力电子器件,由于出现时间较短,尚存在许多从原理、特性到应用、创新的空间。因此,可以提高探究性实验作为现有实验体系的有机组成部分在实验内容中所占的比例。不仅可以提高学生的创新意识,培养学生动手动脑的能力,而且有助于改进现有实验教学方式和考核方法,促进实验教学的整体改革。通过本实验平台的研究开发,可以实现对现有实验装置中电能变换与控制平台的升级,保留现有实验装置中的电源输出接口以及有源负载和无源负载的输入接口。只需在实验平台中分别对输出接口和输入接口进行兼容性设计,即可替换现有实验装置中的电能变换与控制平台。通过对现有实验装置的改进与升级,可以在原有实验内容的基础上,从深度和广度两方面扩充实验内容,充分发掘现有装置在实验教学中的潜力。
1.学生基础知识薄弱学生的基础知识薄弱主要集中在高数、电路和电子技术知识三个主要部分。首先,学生对高数知识基础不扎实。在电力电子技术学习的过程中,学生需要掌握高数知识中的一些内容。但学生在高数上的基础知识不足,给这些知识的学习带来了困难。其次,学生对电路知识掌握不足。电力电子技术的学习离不开电路知识,电路知识是电力电子技术学习的重要组成部分。在实际的学习中,一些学生不能理解掌握电路的原理,所以致使其学习水平不高,进而对电力电子技术的学习产生厌恶感、恐惧感,在一些专业性的知识上,如电路开关、电路控制等也不能取得理想的学习效果。最后,学生的电子技术知识掌握不足。电子技术知识是学生掌握电力电子技术关键因素,对于学生分析电力、电路的能力有着重要的影响。而大部分学生不能掌握电力电子技术的学习要点,因此在设计电路时出现重大失误。
2.教学模式死板受传统应试教育的影响,电力电子技术教学普遍沿袭传统的教师讲解,学生接受的教学模式。教师按照教材内容进行教学,模式生硬死板,只是一味地将知识灌输给学生,而不注重教学的效率以及教学的质量,致使学生不能理解掌握知识点,对枯燥的课堂环境产生厌恶,进而丧失学习兴趣。另外,电力电子技术是一门实践性较强的科目,因此,实验教学是电力电子技术教学的关键部分,对于学生学好电力电子技术知识有着重要的影响作用。而当前的电力电子技术实验教学环节,教师基本上都是按照实验指导书来引导学生进行实验操作,学生只需按照指导书上的步骤以及教师的讲解来对照着进行实验,然后再简单地记录实验过程就算完成整个实验流程。
自本世纪五十年代未第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台 ,以此为基础开发的可控硅整流装置,是电气传动领域的一次,使电能的变换和控制从 旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子 的诞生。进入70年代晶闸管开始形成由低电压小电流到高电压大电流的系列产品,普通 晶闸管不能自关断的半控型器件,被称为第一代电力电子器件。随着电力电子技术理论研究 和制造工艺水平的不断提高,电力电子器件在容易和类型等方面得到了很大发展,是电力电 子技术的又一次飞跃,先后研制出GTR.GTO,功率MOSFET等自关断全控型第二代电力电子器 件。而以绝缘栅双极晶体管(IGBT)为代表的第三代电力电子器件,开始向大容易高频率、响 应快、低损耗方向发展。而进入90年代电力电子器件正朝着复台化、标准模块化、智能化、 功率集成的方向发展,以此为基础形成一条以电力电子技术理论研究,器件开发研制,应用 渗透性,在国际上电力电子技术是竞争最激烈的高新技术领域。
整流管是电力电子器件中结构最简单,应用最广泛的一种器件。目前已形成普通型,快恢复 型和肖特基型三大系列产品,电力整流管对改善各种电力电子电路的性能,降低电路损耗和提高电流使用效率等方面都具有非常重要的作用。自1958年美国通用电气GE公司研制出第一个工业用普通晶闸管开始,其结构的改进和工艺的改革为新器件开发研制奠定了基础,在以后的十年间开发研制出双向,逆变、逆导、非对称晶闸管,至今晶闸管系列产品仍有较为广泛的市场。
1964年在美国第一次试制成功了0.5kV/0.01kA的可关断的GTO至今,目前以达到9kV/0.25kA/0.8kHz的可关断的GTO至今,目前以达到9kV/2.5kA/0.8kHZ及6kV/6kA/1kHZ的水平,在当前各种自关断器件中GTO容量量最大,但其工作频率最低,但其在大功率电力牵引驱动中有明显的优势,因此它在中压、大客量领域中占有一席之地。70年代研制出GTR系列产品,其额定值已达1.8kV/0.8kA/2kHZ, 0.6kV/0.003kA/100kHZ,它具有组成的电路灵活成熟,开关损耗小、开关时间短等特点,在中等容量、中等频率的电路中应用广泛,而作为高性能,大容量的第三代绝缘栅型双极性晶体管IGBT,因其具有电压型控制,输入阻抗大、驱动功率小,开关损耗低及工作频率高等特点,其有着广阔的发展前景。而IGCT是最近发展起来的新型器件,它是在GTO基础上发展起来的器件,称为集成门极换流晶闸管,也有人称之为发射极关断晶闸管,它的瞬时开关频率可达20kHZ,关断时间为1μs,dildt 4kA/ms,du/dt10-20kV/ms,交流阻断电压6kV,直流阻断电压3.9kV,开关时间1000Hz。
进入90年代电力电子器件的研究和开发,已进入高频化,标准模块化,集成化和智能时代。从理论分析和实验证明电气产品的体积与重量的缩小与供电频率的平方根成反比,也就说, 当我们将50Hz的标准二频大幅的提高之后,使用这样工频的电气设备的体积与重量就能大大缩。